
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Graph Theory in Euler’s Tonnetz: Applications in

Composition and Harmonic Analysis

Shanice Feodora Tjahjono 135230971,2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523097@mahasiswa.itb.ac.id, 2xianfeodora@gmail.com

Abstract— The Tonnetz, first described by Leonhard

Euler, is a geometric representation of musical intervals

used and incorporated by composers and musicians,

especially in modern times. By bridging graph theory and

music theory, this paper explores the Tonnetz as a graph

structure, where vertices can represent pitch classes,

whereas edges can represent certain intervals. Applications

of graph-theoretical methods to harmonic analysis can be

found in contemporary compositions thanks to the Tonnetz,

showcasing how such approaches provide deeper insight into

studying harmonic coherence and dissonance resolutions.

We can also utilize the Tonnetz to study harmony in classical

pieces, even if they were composed before the Tonnetz was

founded. By integrating graph theory with Euler's Tonnetz,

this study aims to contribute to the growing field of

mathematical music theory and highlight the

interdisciplinary potential of computational approaches in

musicology.

Keywords—Tonnetz, application of graph theory,

composition, harmonic analysis

I. INTRODUCTION

Graph theory dates to when Leonard Euler solved the

notable problem about the seven bridges of Königsberg in

a 1736 paper [1]. In it, he proved that the problem had no

solution. Many developments in graph theory have

occurred since then - it is currently one of the most active

fields of mathematics. Graph theory studies the

relationships between objects, represented as nodes, or

vertices, connected by edges. Initially studied in

mathematics and computer science, it has become an

important tool in various fields, such as chemistry,

genetics, linguistics, geography, architecture, and music.

Its ability to model complex relationships in a structured

and visual manner makes it a powerful tool to explore

intricate systems.

One such application is the Tonnetz, also developed by

Euler. The Tonnetz maps pitch classes, triads, and their

relationships [2]. It represents harmonic structures

visually, making it useful for examining harmonic

progressions and voice leading. Pitch classes or tones are

represented as nodes, with their relationships or intervals

represented as edges. These representations align

gracefully with the theory of unweighted graphs, allowing

a more formal study of harmony.

By understanding the Tonnetz and its connection to

graph theory, such fusion between mathematics and

music enables us to enhance our understanding of

concepts in harmony, dissonance, and voice leading,

providing valuable insights for composition, performance,

or enjoyment of musical practices. By creating a model of

the Tonnetz as a graph, concepts such as adjacency,

cycles, and shortest paths can be demonstrated to enhance

understanding of harmonic progressions and voice

leading. To exemplify these principles, we developed a

program that applies graph-theoretical methods to the

Tonnetz, enabling computational analysis of harmonic

structures.

This paper also presents its applications by analyzing

contemporary compositions. By examining how

composers and music aficionados have benefited from the

Tonnetz or related concepts, we aim to demonstrate the

practical and theoretical potential of this interdisciplinary

approach.

II. GRAPH THEORY

A. Definition

A graph is a structure consisting of sets of nodes (or

vertices) and edges that connect two nodes. Graphs are

used to model connections or relationships between

objects [3].

Figure 1. Visual representations of graphs

mailto:113523097@mahasiswa.itb.ac.id
mailto:2xianfeodora@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Source: https://www.researchgate.net/figure/sual-

representations-of-graphs-Graph-theory-is-a-branch-of-

discrete-mathematics-and-is_fig1_343610452

B. Nodes and Edges

Nodes, or vertices, represent the objects in a graph,

whereas edges represent the connections or relationships

between nodes [4]. If a node A is connected to node B

with an edge, we can say that A and B are neighbors.

Figure 2. Nodes and Edges

Source: https://mathworld.wolfram.com/GraphEdge.html

C. Weighted and Unweighted Graphs

In graph theory, graphs can be categorized based on the

existence of weights in their edges. Weights represent the

characteristic or value between two nodes. For weighted

graphs, every edge has a weight that represents a value,

such as distance, price, or the intensity of the relationship

between two nodes. As for unweighted graphs, every

edge is considered to have the same weight, therefore all

connections between nodes are equal [5].

D. Directed and Undirected Graphs

Graphs can also be categorized based on the presence of

direction in edges. In directed graphs, each edge has a

specific direction that indicates the relationship from one

node to another. These edges are often represented by

arrows [5]. An example of its application is a

transportation network graph, where the direction

indicates a one-way road between two locations.

In undirected graphs, edges have no direction, so the

relationship between two nodes is symmetrical [5]. An

example of its application is a graph in a social network,

where we can consider the relationship between

individuals as reciprocal.

E. Adjacency List

An adjacency list is one of several methods to model

graphs. Each node is represented as an element in the data

structure, and each element contains a list of other nodes

connected to it [6]. Advantages of this method include

efficiency in memory usage for sparse graphs and ease in

iterating over the neighbors of a particular node.

Figure 3. Comparison Between a Graph and Its

Adjacency List

Source: https://www.geeksforgeeks.org/adjacency-list-

meaning-definition-in-dsa/

F. Breadth-First Search (BFS)

Breadth-First Search is a graph traversal algorithm that

explores all nodes at a given level before moving to the

next level. This algorithm is commonly used to find the

shortest path in an unweighted graph, determine whether

the graph is fully connected, and find the nearest node in

a hierarchal structure. The BFS process takes place by

beginning from the starting node, then uses a queue

structure to keep track of nodes to be explored

consequently [7].

III. THE TONNETZ

The Tonnetz is a conceptual structure in music theory

used to represent harmonic relationships geometrically

[10]. This concept was first described in the 18th century

by Leonhard Euler, a Swiss mathematician and physicist,

in his work, “Speculum Musicum”. Euler used the

Tonnetz to illustrate tonal relationships in harmonic

structure [8]. Later, Hugo Riemann developed this

concept in the 19th century, integrating the Tonnetz with

harmony transformation, which became the basis for the

Neo-Riemannian Theory (NRT) [9]. Throughout the

history of music since, Tonnetz has been used to visualize

relationships between harmonic progression and tonal

changes.

The Tonnetz is represented as a lattice structure that

illustrates the relationship between tones. The geometric

arrangement of the Tonnetz allows for visual analysis of

pitch relationships, making it easier to identify harmonic

patterns and tonal modulations [10].

Figure 4. The Tonnetz

Source: J. C. Hart, "Isochords: Visualizing Structure in

Music," Proceedings of the IEEE Visualization 2003

https://www.researchgate.net/figure/sual-representations-of-graphs-Graph-theory-is-a-branch-of-discrete-mathematics-and-is_fig1_343610452
https://www.researchgate.net/figure/sual-representations-of-graphs-Graph-theory-is-a-branch-of-discrete-mathematics-and-is_fig1_343610452
https://www.researchgate.net/figure/sual-representations-of-graphs-Graph-theory-is-a-branch-of-discrete-mathematics-and-is_fig1_343610452
https://mathworld.wolfram.com/GraphEdge.html
https://www.geeksforgeeks.org/adjacency-list-meaning-definition-in-dsa/
https://www.geeksforgeeks.org/adjacency-list-meaning-definition-in-dsa/

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

(VIS'03), Seattle, WA, USA, 2003, pp. 621-628.

IV. DISCUSSION

A. Modelling Tonnetz as a Graph

The Tonnetz can be represented as an undirected graph

where the tones in a chromatic scale are represented by

nodes and the edges represent the intervals between tones.

Through this approach, the Tonnetz can be modeled as an

adjacency list with its nodes representing the 12

chromatic tones. Each node is connected to every other

node by a certain harmonic interval, calculated using

modular arithmetic to preserve the cyclical nature of the

chromatic scale. The Tonnetz can also be interpreted as a

graph with a dual graph, where nodes represent chords,

and edges connect chords that share one or more tones.

This dual graph provides an additional perspective in

understanding the relationships between chords in the

context of musical harmony.

B. Applications in Composition and Harmonic Analysis

Interactive composition tools such as

PaperTonnetz enables composers to draw harmonic

paths on Tonnetz representations on paper. This

tool combines an interactive interface for real-time

harmonic progression listening with Tonnetz graph

representation. PaperTonnetz supports harmonic

exploration in contemporary music by utilizing the

graph's ability to illustrate the relationships between notes

and chords [11].

Neo-Riemannian transformations, such as parallel (P),

relative (R), and nearest-tone exchange (L), use Tonnetz

structures to model the movement of triad chords

efficiently. These transformations optimize voicing, the

movement between tones with the minimum distance.

This application has helped in the deeper analysis of

harmonic relationships, both in classical and

contemporary compositions [12]. Neo-Riemannian

Theory (NRT) often uses Tonnetz to analyze

compositions that focus on transformations between

major and minor triads.

Examples of analysis in classical compositions include

Schubert’s and Dvořák’s works. Pieces such as "Der

Jüngling und der Tod" (D. 545) and "Trost" (D. 523) have

been the subject of Neo-Riemannian analysis. The studies

in “Two Neo-Riemannian Analyses” [13] emphasize the

transformational relationships between triads and the

nature of voice leading in these works. Another example

can be found in the study “An Analysis of Dvořák’s

Symphony No. 6, II, Using Neo-Riemannian

Transformation Techniques” [14], where the second

movement of Dvořák’s symphony is analyzed using NRT

to understand the complex harmonic transformations and

voice leading in the symphony's structure.

As mentioned previously, NRT has also been used to

analyze contemporary compositions. Wayne Shorter's

jazz compositions using harmonic transformations have

been analyzed with NRT, providing insight into the

unique harmonic language he uses [15].

V. EXPERIMENT

This experiment was designed to see how graph

theory can be implemented in the Tonnetz, especially its

potential applications in composition and harmonic

analysis. Although this program doesn’t cover the concept

of the Tonnetz to its full extent, its aim remains to show

the connection between graph theory and the Tonnetz. By

modeling such a structure through programming, this

experiment aims to,

1. Visualize harmonic relationships effectively,

2. Implement algorithms to analyze tonal

relationships and

3. Provide insight into graph-based learning in

music theory.

In this experiment, Python is utilized to build the graph

structure and execute its main operations, such as finding

and recommending chord progressions and identifying

intervals.

A. Program Design

As a Python implementation of the Tonnetz, this

program utilizes graph structure, where nodes represent

tones and edges represent the intervals between tones.

This program also adopts the dual graph feature of the

Tonnetz, where nodes represent chords and edges

represent shared tones between chords. Implementing

Tonnetz's dual graph enables analysis, such as finding the

shortest possible chord progression between two tones

using the BFS algorithm. Another feature added to this

program is generating a 2-5-1 progression, a technique

commonly found in jazz. Due to the addition of this

feature, we can see how the Tonnetz and graph theory can

be found relevant in notable music techniques that are still

frequently applied to this day. The program also has a

feature to identify intervals between two tones, such as

the major third, the minor third, or the perfect fifth. This

program offers a simple yet interactive interface where

users can explore harmonic structures computationally.

Figure 5. Constructing the Tonnetz Graph

The class TonnetzGraph is the main representation of

the Tonnetz graph. Its function is to build a graph that

represents the intervals between tones in the chromatic

scale, in accordance to the concept of the Tonnetz. The

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

figure also shows the constructor function of the program,

where it initializes all attributes and data structures

needed to represent the Tonnetz graph.

Figure 6. Structuring the Tonnetz Graph as an

Adjacency List and Ensuring it is Undirected

This function ensures that the constructed Tonnetz

graph is represented as an undirected graph. To do so, it

iterates through each node and its neighbors in the

adjacency list. For each connection from node A to B, the

function checks whether a connection from B to A

already exists. If not, this connection is added to the

adjacency list.

Figure 7. Listing All Chords with their Respective

Tones

This function uses a dictionary to map a chord (major or

minor) to its constituent tones. If the chord given as input

is not found in the dictionary, the function returns an

empty list.

Figure 8. Constructing the Tonnetz Dual Graph

This function constructs a dual graph where nodes

represent chords, and edges connect chords that share at

least one tone. It first initializes an empty graph for all

major and minor chords. For each pair of chords, the

function checks whether they share one or more common

tones using set operations. If a shared note is found and

the pair is not yet connected, chord2 is added as a

neighbor of chord1. The function returns an adjacency

list, modeling the tone-based relationships between

chords in a Tonnetz graph.

Figure 9. Shortest Progression Feature

This function utilizes the BFS algorithm to find the

shortest progression path between two chords by using

the dual graph as shown in Figure 8. It starts by verifying

whether the start chord and target chord exist in the dual

graph. If not, the function returns an empty list. Then, a

queue is initialized to store the chord and path pairs, while

a set is used to keep track of the visited nodes. BFS is

executed by traversing the neighbors of each chord until

the target chord is found, and the shortest path is returned.

Figure 10. Interval Identification Feature

This function identifies the tone at a specified interval

from a starting note, both inputted by the user. It first

checks whether the requested interval is valid by

matching it against a list of available intervals. If it is

valid, the function calculates the index of the starting note

in the list of notes, adds a step value according to the

interval, and uses modular arithmetic to ensure the index

remains within the chromatic scale range. The note at the

target index is then returned as the result.

Figure 11. 2-5-1 Progression Feature

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

This function is used to generate a standard 2-5-1 jazz

chord progression. The function begins by verifying

whether the target chord is listed among the chords that

support the 2-5-1 progression. The function returns an

empty list otherwise. The function uses a predetermined

table to identify the dominant and minor second chords

for valid chords. These chords are then combined with the

starting chord and the target chord to create a full 2-5-1

progression, with the starting chord displayed first, then

the target chord's minor second, dominant, and tonic.

Figure 12. Main Program

Users can interact with the Tonnetz graph's features

using the main interface of the terminal-based program.

User input, such as a starting and target chord, a starting

note, or a certain interval, can be entered into the

program and processed by the TonnetzGraph class's

functions. The user has the option of finding the shortest

progression between two chords, generating a 2-5-1 chord

progression, or identifying the notes in a particular

interval. Additionally, input validation is built into the

program to ensure that only valid input is handled,

displaying error messages if an invalid input is received.

The purpose of this interface is to make exploring the

Tonnetz's features more organized and interactive.

B. Testing

The testing phase evaluates the program's

implementation of Tonnetz as a graph, focusing on the

accuracy and functionality of its features. Testing is

performed through various scenarios to ensure that

features such as shortest progression, 2-5-1 progression

generation, and interval identification correctly apply

graph theory principles to model harmonic structures.

This process ensures the program's reliability in using

Tonnetz for computational harmonic analysis.

Figure 13. Menu

The figure above shows the display of the program

when first initiaized. The user is given options to access

features in NodesToNotes, a program made based on the

Tonnetz graph.

Figure 14. Valid Input for Shortest Progression Feature

Figure 15. Valid Input for Shortest Progression Feature

Figures 14 and 15 show the output of the shortest

progression feature when the user enters valid input.

Figure 14 displays a progression of three chords: the

starting chord, a passing chord, and the target chord,

whereas Figure 15 only displays the starting and target

chord. The starting and target chords do not have any

shared tones; hence, a passing chord that shares tones

with both the starting and target chords is required.

Conversely, the chords being entered in Figure 15 share a

tone, making the progression from the starting chord to

the target chord the shortest.

Figure 16. Invalid Input for Shortest Progression

Feature

The program returns an error message if the chords

entered aren’t valid musical major or minor chords.

Figure 17. Valid Input for 2-5-1 Progression Feature

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

When the user enters valid input for this feature, the

program returns a generated 2-5-1 progression, beginning

with the starting chord, followed by the minor second,

dominant, and tonic of the target major chord.

Figure 18. Minor Target Chord Input for 2-5-1

Progression Feature

This program only accepts major chords as the target

chord as minor target chords require diminished chords in

standard 2-5-1 progression, which aren’t accommodated

by this program. Hence, the program returns a message

that users can only enter major chords as the target chord.

Figure 19. Invalid Input for 2-5-1 Progression Feature

Similar to Figure 16, the program returns an error

message if the chords entered aren’t valid musical major

or minor chords.

Figure 20. Valid Input for Interval Identification Feature

When the user enters valid input for this feature, the

program identifies the tone at the specified interval

relative to the input tone. In this example, the program

calculates the perfect fifth (P5) of the tone F and returns

the correct result, C.

Figure 21. Invalid Input for Interval Identification

Feature

The program returns an error message if the user enters

an invalid tone or interval.

Figure 22. Exit

The program exits the program when the exit option is

chosen.

C. Additional notes

Despite the program’s ability to show fundamental

connections between graph theory and the Tonnetz, there

are still several aspects that can be improved upon to

create richer understanding toward music theory and

application possibilities.

The program still has several limitations. One of its

examples includes how the model assumes that every

harmonic interval is the same due to the unweighted

characteristic of the graph. Real-world harmonic analysis

can utilize weighted edges to represent varying degrees of

harmonic tension.

Another limitation is that the model is restricted to

major and minor chords. Other forms of chords, such as

the diminished and augmented chords, or extended

chords, such as sevenths and ninths, can also be identified

through the Tonnetz but aren’t modeled by the program.

Considering these limitations, improvements can be

implemented in the future to make this prototype usable

on a more versatile scale. The graph model can be

modified to be weighted. That way, harmonic analysis

can be executed more comprehensively. Secondly, more

chord options can be added to the program to resemble

the full capabilities of the Tonnetz. Third, the model

could integrate GUI-based visualization of the Tonnetz,

enabling users to see how the Tonnetz depicts tonal

relationships and chord structures. In addition to that, the

model could also provide interactive animations to depict

harmonic transition and flow. Technical-wise, future

developers could improve the efficiency of the

pathfinding algorithm to support weighted paths and

deeper harmonic exploration.

VI. CONCLUSION

This paper documents how Tonnetz concepts, essential

to mathematical music theory, can be modelled and

explored effectively using graph theory. The program

combines music theory and computational analysis by

using graph structures to visualize harmonic relationships

and chord progressions, offering a potent groundwork for

comprehending and visualizing harmonic structures.

In addition to its theoretical contributions, the

presented implementation opens opportunities for cross-

disciplinary applications, particularly in algorithmic or

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

AI-based tools in composition and music analysis. The

ability to computationally model and manipulate

harmonic structures could propel innovation in music

education and analytical techniques, highlighting the

synergy between mathematics, computer science, and the

arts. These collaborations between fields birth the

potential for further exploration and innovation at the

boundaries of these disciplines.

VII. ACKNOWLEDGMENT

The author expresses their deepest gratitude to all

lecturers of IF1220 Discrete Mathematics, especially Dr.

Ir. Rinaldi Munir, M.T. as the lecturer of class K-01, for

his constant guidance and expertise throughout the

semester. The author also extends appreciation to the

Bandung Institute of Technology for its resources and

facilities, and to friends and family for their unwavering

support during the writing of this paper.

REFERENCES

[1] L. Euler, “Solutio problematis ad geometriam situs pertinentis”

Commentarii Academiae Scientiarum Petropolitanae, vol. 8, pp.
128–140, 1736.

[2] L. Euler, “Tentamen novae theoriae musicae” Saint Petersburg:

Imperial Academy of Sciences, 1739.
[3] R. Diestel, “Graph Theory” Springer, 2017.

[4] J. A. Bondy and U. S. R. Murty, “Graph Theory” Springer, 2008.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 3rd ed. Cambridge, MA: MIT Press,

2009.

[6] M. T. Goodrich and R. Tamassia, Data Structures and Algorithms
in Java. Wiley, 2014.

[7] R. Sedgewick and K. Wayne, Algorithms. Addison-Wesley, 2011.

[8] L. Euler, Speculum Musicum. Basel, Switzerland: Birkhäuser,
1739.

[9] H. Riemann, Handbuch der Harmonielehre. Berlin, Germany:

Breitkopf und Härtel, 1893.
[10] Tymoczko, D., "The Geometry of Musical Chords," Science, vol.

313, no. 5783, pp. 72–74, 2006. DOI: 10.1126/science.1126287.

[11] J. Garcia, L. Bigo, A. Spicher, and W. E. Mackay, "PaperTonnetz:
Supporting Music Composition with Interactive Paper," Extended

Abstracts on Human Factors in Computing Systems, Paris, France,

Apr. 2013.
[12] F. Absil, "Neo-Riemannian transformations and the Tonnetz,"

Frans Absil’s Website. [Online]. Available:

https://www.fransabsil.nl/htm/tonnetz_riemannian_transformations
.htm. Accessed: Jan. 5, 2025, 17:54.

[13] T. Brower, "Two Neo-Riemannian Analyses," College Music

Symposium, vol. 45, 2005.
[14] M. Kennedy, "Analyzing Dvořák’s Symphony No. 6: A Neo-

Riemannian Perspective," Honors Theses, University of Southern

Mississippi, 2016.
[15] S. B. P. Briginshaw, "A Neo-Riemannian Approach to Jazz

Analysis," Nota Bene: Canadian Undergraduate Journal of

Musicology, vol. 5, no. 1, Art. 5, 2012.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 7 Januari 2025

Shanice Feodora Tjahjono 13523097

https://www.fransabsil.nl/htm/tonnetz_riemannian_transformations.htm
https://www.fransabsil.nl/htm/tonnetz_riemannian_transformations.htm

